Use of ION Exchange method for treatment of wastewater

 ION EXCHANGE:-

Ion exchange is a process in which ions of a particular species in solution are replaced by ions with a similar charge but of different species attached to an insoluble resin. In essence, ion exchange is a sorption process and can also be considered a reversible chemical reaction. The common appli cations of ion exchange are water softening (removal of "hardness" ions such as CA2+ and Mg2+) and nitrate removal in advanced wastewater treatment operations. These ion exchange resins are either naturally occurring inorganic zeolites or synthetically produced organic resins. The synthetic organic resins are the predominant type used today because their characteristics can be tailored to specific applications.

An organic ion exchange resin consists of an organic or inorganic network structure with attached functional groups that can exchange their mobile ions for ions of similar charge from the surrounding medium. Each resin has a distinct number of mobile ion sites that set the maximum quantity of exchanges per unit of resin. Ion exchange resins are called cationic if they exchange positive ions and anionic if they exchange negative ions. Cation exchange resins have acidic functional groups such as sulfonic, whereas anion exchange resins are often classified by the nature of the functional group as strong acid, weak acid, strong base, and weak base. The strength of the acidic or basic character depends on the degree of ion-ization of the functional groups, similar to the situation with soluble acids or bases. Accordingly, a resin with sulfonic acid groups would act as a strong cation exchange resin.

The ion exchange wastewater treatment - FAQ - Taiyuan Lanlang Technology  Industrial Corp.

PROCESS:-

By definition, ions are charged atoms or molecules. When an ionic substance is dissolved in water, its molecules dissociate into cations (positively charged particles) and anions (negatively charged particles). Taking advantage of this characteristic, IX selectively replaces ionic substances based on their electrical charges. This is accomplished by passing an ionic solution through an IX resin that serves as a matrix where the ion exchange reaction is allowed to take place.

Most commonly, IX resins take the form of tiny, porous microbeads, though they are sometimes available as a sheet-like membrane. IX resins are fashioned from organic polymers, such as polystyrene, which form a network of hydrocarbons that electrostatically bind a large number of ionizable groups. As the process or waste stream flows through the IX resin, the loosely held ions on the surface of the resin are replaced by ions with a higher affinity for the resin material.

Over time, the resin becomes saturated with the contaminant ions, and it must be regenerated or recharged. This is accomplished by flushing the resin with a regenerant solution. Typically consisting of a concentrated salt, acid, or caustic solution, the regenerant reverses the IX reaction by replenishing the cations or anions on the resin surface, and releasing the contaminant ions into the waste water.

 

Comments

Post a Comment

Popular posts from this blog

SLUDGE REDUCTION POTENTIAL OF METAZOA

Pseudomonas in wastewater treatment

ANAEROBIC FERMENTATION